2. In order to derive the identity with Secant and Tangent, we start off with our standard formula of sin^2x+cos^2x=1. We want to get secant, so we divide the whole equation by cos^2x in order to get that one the right side. Once we have 1/cos^2x on the right side, we see that same ratio is secant itself, just used twice, so we substitute 1/cos^2x for secx. On the left side of the equation, we also see sin/cos being the identity for tan, so we substitute tan^2x for that since sin/cos was squared as well. Cos^2x/cos^2x is 1 because they are the same number, just one over the other. We then obtain our final formula of tan^2x+1=sec^2x.
3. Just like the last problem, we start off with our formula of sin^2x and cos^2x=1. We want to get cosecane and cotangent this time, so we divide the equation by sin^2x this time. We get sin^2x/sin^2x+cos^2x/sin^2=1/sin^2x. For the right side, we can substitute that for csc^2x because we know that one of our trig identities is that csc equals 1 over sin. We can sub sin^2x/sin^2x for 1 since they equal each other. We substitute cos^2x/sin^2x for cotangent because the identity of cotangent is cos/sin, or x/y. After we substitute everything, we get 1+cot^2x=csc^2x as our final equation.
Inquiry Activity Reflection
1. THE CONNECTION I SEE BETWEEN UNITS N, O,P, AND Q SO FAR is that they all utilize the unit circle as well as the Pythagorean theorem to solve a multitude of problems.
2. IF I HAD TO DESCRIBE TRIGONOMETRY IN THREE WORDS, THEY WOULD BE sine, cosine, and tangent.
No comments:
Post a Comment